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In this work, the transition between diffusion-limitedsDLA d and ballistic aggregationsBAd models was
reconsidered using a model in which biased random walks simulate the particle trajectories. The bias is
controlled by a parameterl, which assumes the valuel=0 s1d for the ballisticsdiffusion-limitedd aggregation
model. Patterns growing from a single seed were considered. In order to simulate large clusters, an efficient
algorithm was developed. ForlÞ0, the patterns are fractal on small length scales, but homogeneous on large
ones. We evaluated the mean density of particlesr̄ in the region defined by a circle of radiusr centered at the
initial seed. As a function ofr , r̄ reaches the asymptotic valuer0sld following a power lawr̄=r0+Ar−g with
a universal exponentg=0.46s2d, independent ofl. The asymptotic value has the behaviorr0,u1−lub, where
b=0.26s1d. The characteristic crossover length that determines the transition from DLA- to BA-like scaling
regimes is given byj,u1−lu−n, wheren=0.61s1d, while the cluster mass at the crossover follows a power law
Mj,u1−lu−a, where a=0.97s2d. We deduce the scaling relationsb=ng and b=2n−a between these
exponents.
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I. INTRODUCTION

The pattern formation in nonequilibrium processes is a
longstanding problem in statistical physicsf1–3g. In particu-
lar, the diffusion-limited aggregationsDLA d model f4g is a
noteworthy example in which a very simple algorithm gen-
erates disorderly fractal clusters. This model was related to
several physical and biological applications, such as elec-
trodepositionf5g, viscous fingeringf6g, bacterial colonies
f7g, and neurite formationf8g. In the DLA model, particles
released at a point distant from the cluster execute random
walks until they find a neighbor site of the cluster and irre-
versibly stick at this site. If the random walks are replaced by
ballistic trajectories at random directions, we have the ballis-
tic aggregationsBAd modelf9g. In contrast to DLA, the BA
model generates disordered nonfractal clusters with non-
trivial scaling propertiesf2,10g.

Due to its importance as a fundamental model, several
generalizations of the DLA model were proposedf1,2g. In
particular, those models in which the particle trajectories are
biased random walks were investigatedf11–16g. In these
models, on short length scales the particle trajectories are
common random walks with fractal dimension 2.0, whereas
on longer length scales the bias becomes dominant and the
dimensionality of the walk is 1.0. Clusters grown using this
type of walk must behave like the DLA model on short
length scales, while nonfractal patterns are observed on
longer ones. Consequently, the mass of a cluster of sizel is
given by

Msld = ldf fsl/jd, s1d

in which

fsxd , Hconst if x ! 1,

xd−df if x @ 1.
J s2d

Here,d is the space dimension,df is the DLA fractal dimen-
sion, andj is the crossover radius from DLA- to BA-like
scaling regimes. This idea was first considered by Meakin
f11g. In his model, the simulations start with a single seed at
the center of a square lattice and the drift of all trajectories is
in a fixed lattice direction. Along the walk, the particle is
moved one lattice unit in the drift direction with probability
P, or moves to one of its four next-neighbor sites with prob-
ability 1−P. The model generates patterns with a growth
tendency in the opposite direction of the drift. The author
argues that the crossover from the DLA-like structure on
short length scales to a compact structure on longer ones is
characterized by a lengthj, P−1. However, using a renor-
malization group approach, Nagatani foundj, P−1/sd−dfd

f17g. Kim et al. f12,13g studied lattice models with a global
drift to the seed, in which the particles have a higher prob-
ability to move to the nearest neighbor representing the
shortest distance away from the seed. The pattern morpholo-
gies are ruled by the lattice anisotropy and their fractal di-
mension is 1. Nagatanif14g considered the effects of positive
and negative radial drifts in the DLA model. In the positive
case the cluster fractal dimension is asymptotically 2, while
eccentric patterns with dimension 1 were found for the nega-
tive case. Other modelsf15,16g consist of deposition pro-
cesses on ad-dimensional substrate in which the walk drift is
in the substrate direction.

In the present paper, we are interested in the transition
from DLA to BA models when the random or ballistic tra-
jectories of DLA and BA models, respectively, are replaced
by biased random walks with a random drift direction. The
central concern of this work is the fact that all real fractals*Electronic address: silviojr@ufv.br
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exhibit scaling only on limited ranges and, consequently, a
quantitative analysis of both experiments and simulations de-
mands a deep understanding of these crossovers. The outline
of the paper is the following. In Sec. II, the model and the
respective computational algorithm are described. In Sec. III,
the simulational results are presented and discussed. Finally,
some conclusions are drawn in Sec. IV.

II. MODELS AND METHODS

As in the original DLA and BA models, at the beginning
of the simulations a unique seed localized in the center of the
lattice constitutes the cluster. Then, particles are sequentially
released on a circle distant from the cluster and execute bi-
ased random walks. The distance between the center of the
lattice and the launching circle is denoted byRl. The biased
walks are defined by

xn+1 = xn + cossw + lund,

yn+1 = yn + sinsw + lund, s3d

wherexn andyn are the particle coordinates at thenth step of
the walk,w is a random angle that defines the bias direction,
lP f0,1g is the parameter that controls the random compo-
nent of the trajectories, andun is a random direction. The
variablesw andun are in the rangef−p ,pg. Notice thatw is
defined at the beginning of the walks, whereasun assumes
random values for each walk step. One can see that the par-
ticular casesl=0 and 1 recover the BA and DLA models,
respectively. If the particle visits a site neighboring the clus-
ter it irreversibly joins this site. However, if the distance
between the particle and the cluster is too large, i.e., larger
than a killing radiusRk, the particle is excluded and a new
one is released at the launching circle. In order to determine
when a walker is neighboring a cluster site, its lattice posi-
tion was defined as the next integer value of its real coordi-
nates defined by Eq.s3d. The majority of the results pre-
sented in this work refer to the square lattice version of the
model.

The previously introduced variablessRl and Rkd must be
as large as possible. However, computational limitations re-
strict the use ofRl andRk values. We definedRl =Rmax+R0,
whereRmax is the maximum distance from the center of the
lattice of a particle belonging to the cluster. For DLA and BA
modelsR0 can be of the order of some lattice unitsf1,2g.
However, for the model with biased random walks the pat-
tern morphologies are strongly dependent on this value. Our
tests suggest that the patterns become insensitive toR0 varia-
tions whenR0.300, in agreement with the values adopted
by Kim f16g for a model of deposition of biased random
walks on a substrate. Thus,R0=400 was used in all simula-
tions. The killing radiusRk must be 10 to 100 timesRmax for
very large DLA clustersf1g whereas anRk only some lattice
units larger thanRmax is necessary for the BA model. Due to
the bias present in the random walks, we used the same
strategy adopted by Kimf16g, i.e., Rk=2Rmax+R0. Figure 1
illustrates two tentatives, one successful and the other frus-
trated, to add a new particle to the cluster.

To analyze the transition between BA and DLA it is nec-
essary to simulate large clusters using lattices containing up
to 1043104 sites, especially whenl&1. Consequently, the
computational time becomes prohibitive and an efficient al-
gorithm is necessary. A technique commonly used to simu-
late large DLA and related models is to allow the particles to
execute long steps in random directions if they are far from
the clusterf18–21g. This procedure is correct because the
probability that a random walker crosses the circle centered
on its initial position in a given anglef is uniformly distrib-
uted in the intervalf−p ,pg. However, for the biased random
walkers this is not true. Indeed, the probability density dis-
tributions are concentrated around the directionw. For l not
very close to unity or for large steps, the probability distri-
butions are very well fitted by Gaussian curves centered atw,
as illustrated in Fig. 2. Using this fact, the following proce-

FIG. 1. Schematic representation of the model. FIG. 2. Angle distributions for biased random walkers with
preferential directionw=0 and the correspondent Gaussian fits. The
curves correspond tol=0.99 andRs=200 ssquaresd, l=0.99 and
Rs=1000 strianglesd, andl=0.90 andRs=200 scirclesd. Other pa-
rameter sets used in the simulations provide fits better than those
shown in this figure. For all couplesl andRs used in the simula-
tions a correlation coefficientr2ù0.999 was required.
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dure was adopted. If the distance between the random walker
and the cluster is larger than a valueRs+d, it executes a jump
of length Rs. Thus, a long jump cannot lead the walker a
distance smaller thand. The jump direction isf=w+fg,
wherefg is a random number between −p and p selected
from a Gaussian distribution

Psfgd =
1

sÎp/2
expS− 2

fg
2

s2D . s4d

In order to obtain the Gaussian widths for each couplel
and Rs, a large number of biased random walkss106–107d
were simulated and a histogram of the probabilities built
sFig. 2d. Then thes value can be determined using least
squares Gaussian fits. The quality of fits is improved as
largerRs values and smallerl values are used. Therefore, the
Rs values should be sufficiently large to reproduce good fits,
in particular forl&1. Furthermore, severalRs values can be
used in the same simulation improving the algorithm effi-
cacy. We used two values:Rs=200 and 1000. Thes values
used in the simulations are shown in Table I. Also,d=20 was
used. All tests show that the growth patterns are not sensitive
to thed value. It is worth noting that the Gaussian distribu-
tion is not normalized in the intervalf−p ,pg and, obviously,
this is not the actual angle distribution for the present prob-
lem. However, the very good fits to the angle distributions
justify the use of the Gaussian functions.

III. RESULTS AND DISCUSSION

The first stage of the present work was to confirm the
validity of the previous defined algorithm. We simulate rela-
tively small lattices containing 1033103 sites with and with-
out the optimization forl=0.99. In Fig. 3, comparisons be-
tween clusters generated withstopd and withoutsbottomd the
optimization are shown. Comparing the patterns, one can see
that they are statistically indistinguishable. Using the mass-
ratio method, the fractal dimensions of the patterns generated
with and without the algorithm weredf =1.70±0.02 and
1.72±0.02, respectively, and the exponents of the radius of
gyration, defined byrg,nz sn is the number of cluster par-
ticlesd f2g, were z=0.560±0.003 and 0.561±0.002, respec-
tively. These exponents reinforce the algorithm validity. Con-
cerning the computational time, a single run to generate one

of the clusters shown in Fig. 3 without the optimization takes
about 1 h in a 3 GHzpentium IV, but the same simulation is
done in 10 min using the optimization. Therefore, even for
small lattices the simulation performance is greatly improved
when our optimized algorithm is used.

Figure 4 shows growth patterns for distinctl values.
These patterns were generated with the optimization at lat-
tices containing 1033103 sites. The simulations stopped
when the aggregate reaches the lattice edge. A continuous
transition from disordered and dense to ramified clusters is
observed. For smalll values the patterns are essentially
BA-like but the patterns become very similar to the DLA
clusters asl→1. Indeed, the cluster generated withl
=0.995 is characterized by the square lattice anisotropy, a
signature of the DLA modelf1,2g. However, one expects that
all patterns become asymptotically homogeneous with a fi-
nite characteristic size for the empty regions.

In order to quantify the DLA to BA morphology transi-
tion, the mean particle density in the inner regions of the
cluster was evaluated. This mean densityr̄srd is defined as
the ratio between the number of occupied sites and the total
number of sites in a region delimited by a circle of radiusr
centered at the initial seed. Since one expects asymptotically
nonfractal clusters, the density must reach a finite valuer0 as
r →`. Nevertheless, the approach to the constant density is
very slow and takes a scale invariant form

r̄srd = r0 + Ar−g. s5d

Here, g is a correction to the fractal dimension andA a
constant. This scaling hypothesis was also used by Liang and
Kadanoff f10g to study the driven ballistic aggregation, in
which the particles trajectories are in a single direction. They

TABLE I. s values determined with the Gaussian least squares
fits.

l ssRs=200d ssRs=1000d

0.100 0.02585 0.01202

0.300 0.07591 0.03413

0.500 0.12535 0.05613

0.700 0.18206 0.08139

0.900 0.31933 0.14216

0.950 0.45109 0.20057

0.990 1.03575 0.45130

0.995 1.53278 0.63451

FIG. 3. Two clusters generatedsad using or sbd not using the
optimization. In these simulations, lattices of sizeL=1000 and
l=0.99 were used.
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conclude that theg exponent is nonuniversal, i.e., depends
on the lattice structure.

In Fig. 5, the double-logarithm plots ofr̄−r0 as a function
of r for distinct l values are shown. The densityr0 was
obtained by searching for the best linear fit in the larger
linear region. To avoid the active region, we limited the fits
to those data corresponding to a half of the cluster sizes.
Depending on thel value, lattices with linear sizeL=5
3103 or L=104, and 10–20 independent runs were used. One
can observe a power law regime forr .10 showing that the
approach to the stationary value obeys Eq.s5d. In Fig. 6, the
asymptotic densityr0 and theg exponent are shown as func-
tions of 1−l, the distance from the transition point.r0 acts
as an order parameter, which vanishes at the critical point
following a relation r0,u1−lub. The exponent obtained
from the data of Fig. 6sad was b=0.27s1d, whereas the ex-
ponents obtained forL=23103 and 104 wereb=0.28s2d and
0.26s1d, respectively. The numbers in parentheses represent
the uncertainties. In Fig. 6sbd, theg exponents for distinctl
values are shown. One can observe thatg fluctuates around
the value 0.46. The smaller value found wasg<0.43 and the
larger oneg<0.48. Our simulations suggests that theg ex-
ponent is independent ofl and its value isg=0.46±0.02.

The error indicated in theg value was evaluated through an
average over the data of Fig. 6sbd.

In order to test the universality of theg andb exponents
we studied two versions of the present model. In the first
one, we use square lattices, but the walkers stick to the clus-
ter if they reach a nearest or a next-nearest empty neighbor
of an occupied site. In the second one, we use a hexagonal
lattice. Lattices with sizeL=2000 were used. The exponents
for the first modified version wereb=0.27±0.02 andg
=0.49±0.03, and the exponents for hexagonal lattice were
b=0.28±0.02 andg=0.49±0.03. These results lead us to
conclude that these exponents are universal.

The morphological transition between BA and DLA mod-
els was also characterized by the crossover radiusj defined
in Eqs. s1d and s2d. The number of particlesMsrd inside a
region delimited by a circle of radiusr centered at origin was
evaluated. TheM vs r curves exhibit tenuous crossovers de-
termining the transition between DLA- and BA-like scaling
regimes. In Fig. 7sad, an example of this crossover is shown.
Since the growth patterns scale as DLAsBAd for small

FIG. 4. Morphology transition
between BA and DLA growth pat-
terns. The number of aggregated
particles varies from 2.53105

sl=0.1d to 53104 sl=0.995d.

FIG. 5. Double-logarithm plots ofr̄−r0 againstr for l=0.3
ssquaresd and 0.99scirclesd. The dashed line corresponds to the
slope −0.46. The linear fits of the data provideg<0.45 forl=0.3,
andg<0.47 for l=0.99.

FIG. 6. sad Stationary densityr0 and sbd g exponent defined in
Eq. s5d as a function of the distance from the transition point. The
lattice size used wasL=53103 and simulation stopped when the
cluster reaches the lattice edge.
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slarged length scales, in order to evaluate the crossoverj we
fitted the curves by power lawsMsrd, rdf, wheredf =1.71
and 2 were used for the initial and the final curve regions,
respectively. The crossover lengths obtained through this
method are drawn as a function of the distance from the
transition point in Fig. 7sbd. The lengthj diverges atl=1
following a power law j,u1−lu−n, where n=0.61s1d.
Moreover, the mass at the critical point diverges asMj

,u1−lu−a, wherea=0.97s2d.
As discussed in Sec. I, these crossovers between fractal

and homogeneous patterns occur due the crossover in the
particle trajectories. However, the crossover length of the
walker trajectories is given byssee the Appendixd

jw =
pl

sinspld
−

sinspld
pl

, s6d

which diverges asjw,u1−lu−1 for l&1. Thus, although the
transition between DLA and BA models is due to the transi-
tion in the walk dimensionality, the corresponding crossover
lengths are not proportional.

Notice that Eq.s5d describes the mean density behavior
whenr'j. Moreover,r̄, rdf−2 whenr !j due to the cluster
fractality on this length scale. Thus, using Eq.s5d, we found
that the mean density at the crossover can be written as

r̄j = A1u1 − lub + A2u1 − lung, s7d

whereA1 andA2 are constants. But the mean density at the
crossover is given by

r̄j ,
Mj

j2 , u1 − lu2n−a. s8d

Comparing Eqs.s7d ands8d, we have that they are consistent
only if

b = ng and b = 2n − a. s9d

In agreement with the scaling relations9d, the number of
independent exponents is reduced from 4 to 2. Using the
exponents measured for systems with sizeL=5000, we
found ng=0.28s2d and 2n−a=0.25s3d, in addition to b
=0.27s1d. The difference between these values is inside the
error margins indicated in the parentheses. The large uncer-
tainties obtained in the exponentss5%–10%d originate in the
difficulty in determination of the exact crossover points.

IV. CONCLUSIONS

In the present work, we studied the transition between
diffusion-limited aggregation and ballistic aggregation mod-
els. We used a model in which the random walks in the DLA
model are replaced by biased random walks with a drift in a
random direction. The drift is controlled by a parameterl
P f0,1g that leads the model from BAsl=0d to DLA sl
=1d fsee Eq.s3dg. Also, an efficient algorithm, which allows
large scaling analysis of the growth patterns, was introduced.

For any bias, the clusters are fractalsDLA-like d on the
short length scales whereas nonfractal patterns are obtained
on the large ones. The transition between DLA- and BA-like
scaling regimes is determined by a characteristic lengthj
that diverges asl→1 following a power lawj,u1−lu−n,
where n=0.61s1d, while the cluster mass at the crossover
follows the relationMj,u1−lu−a, where a=0.97s2d. This
crossover was not numerically determined in similar previ-
ous work. The density in the inner regions of the cluster
reaches an asymptotic valuer0,u1−lub, whereb=0.26s1d.
However, this approach is slow and follows a power law
decay with a universal exponentg=0.46s2d independent of
the drift. These exponents obey the scaling relationsb=ng
andb=2n−a.

It is worth stressing two main contributions of the present
work. The first one is the development of an algorithm that
can be used to study other models with biased random walks
as for example those related to deposition processesf15,16g,
for which the determination of universality classes is hard
work. The second one is the careful quantitative character-
ization of the transition between DLA and BA growth mod-
els that, in our knowledge, was not previously done. The
understanding of these crossovers can be an essential tool in
the analysis of real fractals, which always exhibit scaling in
limited ranges.
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APPENDIX: DEMONSTRATION OF EQ. (6)

For the sake of simplicity, we consider Eq.s3d with a drift
directionw=0 andx0=y0=0. Iterating Eq.s3d for n steps, we
found

FIG. 7. sad Determination of the crossover between DLA- and
BA-like scaling regimes forl=0.90. The straight lines represent the
slopes 1.71 and 2, i.e., the fractal dimensions for DLA and BA
models, respectively.sbd The crossover lengthssquaresd and the
corresponding massscirclesd as a function of the distance from the
transition point. These results were obtained forL=53103.
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kxnl = o
i=1

n

kcossluidl sA1d

and

kxn
2l = o

i=1

n

o
j=1

n

kcossluidcosslu jdl. sA2d

But

kcossluidl =
1

2p
E

−p

p

cossluddu =
sinspld

pl
sA3d

and

kcossluidcosslu jdl = Fsinspld
pl

G2

s1 − di jd

+
1

2
Fsins2pld

2pl
+ 1Gdi j , sA4d

wheredi j is the Kronecker delta function.
Substituting Eqs.sA3d and sA4d in Eqs. sA1d and sA2d,

respectively, we found

kxnl = n
sinspld

pl
sA5d

and

sx
2snd = nH1

2
F1 +

sins2pld
2pl

G − Fsinspld
pl

G2J , sA6d

wheresx
2snd=kxn

2l−kxnl2 is the variance of the coordinatexn.
With a similar analysis, we obtained

kynl = 0 sA7d

and

sy
2snd = n

1

2
F1 −

sins2pld
2pl

G . sA8d

Thus, the walk mean displacementrsnd=Îkxnl2+kynl2 and
the variances2snd=sx

2+sy
2 are given by

rsnd = n
sinspld

pl
sA9d

and

ssnd = n1/2H1 −Fsinspld
pl

G2J1/2

. sA10d

The crossover of the walk dimensionalitysd=2 for short
times andd=1 for long onesd occurs whenrsnd,ssnd. Mak-
ing equal Eqs.sA9d and sA10d, we obtained an estimate of
the characteristic number of stepsN necessary for the cross-
over,

N = F pl

sinspldG2

− 1. sA11d

Thus, the characteristic crossover length is

jw = rsNd =
pl

sinspld
−

sinspld
pl

. sA12d

In Fig. 8, jw is plotted as a function of 1−l. Expanding
Eq. sA12d aroundl=1, we foundjw,u1−lu−1.

f1g P. Meakin,Fractals, Scaling and Growth far from Equilibrium
sCambridge University Press, Cambridge, U.K., 1998d.

f2g T. Vicsek, Fractal Growth PhenomenasWorld Scientific,
Singapore, 1992d.

f3g A.-L. Barabasi and H. E. Stanley,Fractal Concepts on Surface
Growth sCambridge University Press, Cambridge, UK, 1995d.

f4g T. A. Witten and L. M. Sander, Phys. Rev. Lett.47, 1400
s1981d.

f5g M. Matsushita, M. Sano, Y. Hayakawa, H. Honjo, and Y.
Sawada, Phys. Rev. Lett.53, 286 s1984d.

f6g K. J. Måløy, J. Feder, and T. Jøssang, Phys. Rev. Lett.55,
2688 s1985d.

f7g M. Matsushita and H. Fujikawa, Physica A168, 498 s1990d.
f8g F. Caserta, H. E. Stanley, W. D. Eldred, G. Daccord, R. E.

Hausman, and J. Nittmann, Phys. Rev. Lett.64, 95 s1990d.

f9g M. J. Vold, J. Colloid Sci.18, 684 s1963d.
f10g S. Liang and L. P. Kadanoff, Phys. Rev. A31, 2628s1985d.
f11g P. Meakin, Phys. Rev. B28, 5221s1983d.
f12g Y. Kim, K. R. Choi, and H. Pak, Phys. Rev. A45, 5805

s1992d.
f13g Y. Kim and K. R. Choi, Phys. Rev. E48, 1586s1993d.
f14g T. Nagatani, Phys. Rev. A39, 438 s1989d.
f15g M. Castro, R. Cuerno, A. Sánchez, and F. Domínguez-Adame,

Phys. Rev. E62, 161 s2002d.
f16g Y. Kim, J. Korean Phys. Soc.30, 511 s1997d.
f17g T. Nagatani, Phys. Rev. A37, 3514s1988d.
f18g R. C. Ball and R. M. Brady, J. Phys. A18, L809 s1985d.
f19g P. Meakin, J. Phys. A18, L661 s1985d.
f20g S. Tolman and P. Meakin, Phys. Rev. A40, 428 s1989d.
f21g S. C. Ferreira, Jr., Eur. Phys. J. B42, 263 s2004d.

FIG. 8. Double-logarithm plot of the crossover lengthjw as a
function of 1−l. The solid line represents the data obtained from
Eq. sA12d and the dashed line has a slope −1.

FERREIRAet al. PHYSICAL REVIEW E 71, 051402s2005d

051402-6


